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SUMMARY

Although rare, typhoid fever cases acquired in the United States continue to be reported. Detection 

and investigation of outbreaks in these domestically acquired cases offer opportunities to identify 

chronic carriers. We searched surveillance and laboratory databases for domestically acquired 

typhoid fever cases, used a space–time scan statistic to identify clusters, and classified clusters as 

outbreaks or non-outbreaks. From 1999 to 2010, domestically acquired cases accounted for 18% 

of 3373 reported typhoid fever cases; their isolates were less often multidrug-resistant (2% vs. 
15%) compared to isolates from travel-associated cases. We identified 28 outbreaks and two 

possible outbreaks within 45 space–time clusters of ⩾2 domestically acquired cases, including 

three outbreaks involving ⩾2 molecular subtypes. The approach detected seven of the ten 

outbreaks published in the literature or reported to CDC. Although this approach did not 

definitively identify any previously unrecognized outbreaks, it showed the potential to detect 

outbreaks of typhoid fever that may escape detection by routine analysis of surveillance data. 

Sixteen outbreaks had been linked to a carrier. Every case of typhoid fever acquired in a non-

endemic country warrants thorough investigation. Space–time scan statistics, together with shoe-

leather epidemiology and molecular subtyping, may improve outbreak detection.
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INTRODUCTION

Typhoid fever is an acute systemic infection caused by Salmonella enterica serotype Typhi 

(S. Typhi). An estimated 13.5 million cases of typhoid fever occurred worldwide in 2010 [1]. 

Infection spreads by the faecal–oral route, primarily through ingestion of contaminated food 

or water and is common in populations without access to safe drinking water or sanitation 

and hygiene [2]. Symptoms are non-specific, and the incubation period is variable, ranging 

from 3 days to >60 days, with a median of 8–14 days [3]. Some patients with acute illness 

become chronic carriers and serve as reservoirs of S. Typhi [2].

In the United States, the incidence of typhoid fever has been low since the 1940s [2], but it 

remains an important public health issue due to its high hospitalization rate and the potential 

for infected individuals to contaminate food and water sources. Typhoid fever is nationally 

notifiable and about 350 acute infections are reported annually [4]. Most patients report 

travel within 30 days preceding their illness onset to a country where typhoid fever is 

endemic. However, about 50 patients each year do not report any foreign travel, suggesting 

they were infected in the United States.

Outbreaks of typhoid fever in the United States are uncommon, but thorough investigation to 

identify the source is indicated. From 1960 to 1999, 54 outbreaks with exposure in the 

United States were documented; an asymptomatic carrier was identified in 16/26 foodborne 

outbreaks [5]. Typhoid fever outbreaks caused by chronic carriers can be difficult to detect 

because carriers typically shed the bacterium intermittently for many years, potentially 

causing few infections over a long period. These small but prolonged outbreaks may escape 

detection by routine surveillance. Early outbreak detection offers an opportunity to treat 

chronic carriers and prevent illnesses.

A wide range of statistical algorithms is used for surveillance and outbreak detection [6, 7] 

and an increasing number of disease cluster detection tools have been developed and 

evaluated [8–10]. The space–time scan statistic is an analytical method that has been used to 

detect and evaluate clusters of infectious and non-infectious diseases [11–15]. Its ability to 

detect infectious disease outbreaks has been evaluated using epidemiological evidence such 

as previously reported outbreak and molecular data [11, 15].

We analysed clinical, epidemiological, and microbiological characteristics of typhoid fever 

cases acquired in the United States and compared them to those acquired abroad. We then 

focused on the domestically acquired typhoid fever cases, applying a space–time scan 

statistic to screen for outbreaks of domestically acquired typhoid fever in the United States. 

We evaluated how well a space–time scan statistic approach identified reported outbreaks 

and whether it uncovered any previously unrecognized outbreaks.

METHODS

Case definition and identification

For every laboratory-confirmed typhoid fever case in the United States, state and local health 

officials are requested to report the case to the National Notifiable Diseases Surveillance 
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Systems (NNDSS); complete and submit an enhanced case investigation form to the 

National Typhoid and Paratyphoid Fever Surveillance (NTPFS) system at the Centers for 

Disease Control and Prevention (CDC); subtype the isolate using pulsed-field gel 

electrophoresis (PFGE) and upload the PFGE pattern to PulseNet, the national molecular 

subtyping network for foodborne disease surveillance; and send the isolate to the National 

Antimicrobial Resistance Monitoring System (NARMS) at CDC. The NTPFS case report 

form (CDC Form 52.5) collects basic information about patient demographics, travel and 

vaccine history, hospitalization and outcome, and whether the case was known to be part of 

an outbreak or linked to a carrier. NARMS tests all S. Typhi isolates for susceptibility to 15 

antimicrobial agents using broth microdilution (Senititre; Trek Diagnosis, USA) and 

interprets the results according to Clinical and Laboratory Standards Institute (CLSI) 

criteria, when available [16, 17].

We linked the NTPFS and NARMS databases for typhoid fever cases occurring during 

1999–2010. We defined domestically acquired typhoid fever as a compatible illness in a 

person with culture-confirmed S. Typhi infection who denied foreign travel during the 30 

days before illness onset, and a travel-associated case as a compatible illness in a person 

with culture-confirmed S. Typhi infection who reported foreign travel during the 30 days 

before illness onset. For each domestically acquired typhoid case in the NTPFS, but not for 

travel-associated cases, we identified matching isolates in the PulseNet database. When 

PFGE data were missing in PulseNet, but the isolate was available from the NARMS 

collection, we performed PFGE characterization using standard methods and analysed 

patterns using BioNumerics v. 5.1 software (Applied Maths, Belgium) [18].

Identification of previously reported outbreaks

Outbreaks of foodborne illness have been voluntarily reported to the Foodborne Disease 

Outbreak Surveillance System (FDOSS) at CDC by state and local health departments since 

1973. Similarly, since 1971, outbreaks of waterborne diseases have been reported to the 

Waterborne Disease and Outbreak Surveillance System (WBDOSS) also at CDC. All 

waterborne and enteric disease outbreaks involving foodborne, person-to-person contact, 

animal contact, environmental contamination, and indeterminate means have been reported 

to the National Outbreak Reporting System (NORS) since 2009. We searched these systems 

for outbreaks of typhoid fever that occurred in the United States from 1999 to 2010. In 

addition, we searched the published literature for reports of domestically acquired typhoid 

fever outbreaks in the United States during the same period.

Characteristics of typhoid cases

We calculated frequencies of epidemiological, clinical, and microbiological characteristics. 

We defined multidrug resistance as resistance to ampicillin, chloramphenicol, and 

trimethoprim-sulfamethoxazole [4], and nalidixic acid resistance as minimum inhibitory 

concentration (MIC) >32 μg/ml [4, 16]. We used the χ2 test and Fisher’s exact test (when 

expected cell frequencies were <5) to compare characteristics of domestically acquired and 

travel-associated cases. We calculated crude rates for domestically acquired and travel-

associated typhoid fever cases for ten states that reported the largest number of domestically 

acquired cases.
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Detection of domestically acquired typhoid clusters

We identified clusters of ⩾2 domestically acquired typhoid cases using a space–time scan 

statistic. This approach identifies excess cases in space and time, using a cylindrical 

scanning window [11, 13, 19]. Briefly, at each space–time location, the window increases in 

size in both space and time and a Poisson likelihood ratio test comparing the observed 

disease rate inside and outside the cylinder is provided by the space–time scan statistic [13, 

19]. The input data for the space–time scan analysis comprised domestically acquired 

typhoid case counts reported to NTPFS per month per county, census population estimates 

per year per county, and the centroid coordinates for each county. We used a cylindrical scan 

statistic with a circular base and set the maximum temporal scanning window to be 50% of 

the study period (i.e. 6 years) and the maximum spatial scanning window to be the area 

covering 50% of the study population to detect clusters that do not spatially overlap. We 

used 999 Monte Carlo iterations to estimate the significance levels of the clusters. We 

computed scan statistics separately for detecting clusters within states with ⩾2 domestically 

acquired typhoid cases, selected regions, and the continental United States. We selected 

regions that consistently reported a large number of domestically acquired typhoid cases by 

identifying states ranked in the top five in domestically acquired typhoid reporting rates for 

⩾3 years during 1999–2010 and included their adjacent states. We considered all clusters 

detected with P values < 1 to increase sensitivity for outbreak detection. Demographic 

variables were not used to generate sub-population cluster profiles. When overlapping 

clusters were detected using more than one scan (e.g. state and region scans), the larger 

cluster was selected for further analysis, except when the larger cluster was determined to 

include multiple unrelated clusters based on epidemiological information. We compared the 

number of detected outbreaks and the positive predictive values when all clusters were 

considered regardless of statistical significance and when only statistically significant 

clusters (alpha = 0.05) were considered. All scan statistic procedures were performed using 

SaTScan™ v. 9.1.1 [20]. The geographical information system ArcMap 10 (ESRI, USA) 

was used for visualizing the scan statistic outputs.

Classification of domestically acquired typhoid clusters

We classified space–time clusters as outbreaks, non-outbreaks, or possible outbreaks, using 

domestically acquired typhoid outbreaks previously reported in the literature and CDC 

outbreak reporting systems, epidemiological data from the NTPFS case report forms, PFGE 

patterns, and additional information obtained from state health departments during followup. 

We defined a space–time cluster as an outbreak if it involved ⩾2 cases with a common 

exposure, such as a food item, a chronic carrier, or a household contact. We defined a space–

time cluster as a non-outbreak if it involved ⩾2 cases in which common exposure was 

unlikely either because cases had different exposures that could explain typhoid fever or had 

different PFGE patterns and no epidemiological link. Clusters with insufficient data to 

determine outbreak status were classified as possible outbreaks.

Characteristic of domestically acquired typhoid outbreaks

We characterized the source of infection and PFGE patterns of cases in detected outbreaks 

and compared with previously reported outbreaks.

IMANISHI et al. Page 4

Epidemiol Infect. Author manuscript; available in PMC 2017 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RESULTS

Case identification

A total of 3499 typhoid fever cases were reported to NTPFS during 1999–2010; travel status 

was known for 3373 (96%) cases and domestically acquired typhoid cases accounted for 610 

(18%) of them. Antimicrobial susceptibility data were linked with 356 (58%) domestically 

acquired typhoid cases and 1669 (60%) travel-associated cases. PFGE data were linked with 

416 (68%) domestically acquired typhoid cases.

Characteristics of typhoid cases

While the number of travel-associated cases increased gradually over the study period, the 

number of domestically acquired cases remained stable at around 50 cases per year (Fig. 1). 

The median age of domestically acquired typhoid patients was 24 years [interquartile range 

(IQR) 7–39, range 0–89], and 46% were female (Table 1). Compared to travel-associated 

typhoid patients, domestically acquired typhoid patients were more often aged ≤5 years 

(21% vs. 15%, P < 0.001) or >60 years (9% vs. 3%, P < 0.001). Seventy-one per cent of 

domestically acquired typhoid patients were hospitalized, and one patient died. Patients with 

domestically acquired illness were less likely to report typhoid vaccination within 5 years 

before illness onset compared to patients with travel-associated illness (1% vs. 6%, P < 

0.001). Compared to isolates from travel-associated cases, those from domestically acquired 

cases were less frequently multidrugresistant (2% vs. 15%, P < 0.001) or nalidixic acid 

resistant (13% vs. 60%, P < 0.001). Of 416 cases with PFGE pattern information, there were 

249 unique XbaI patterns (median number of isolates per XbaI PFGE pattern = 1; IQR 1–2, 

range 1–14). California reported 24% of all travel-associated cases, followed by New York 

(17%), and New Jersey (8%). California also reported the largest proportion of domestically 

acquired typhoid cases (30%), followed by New York (13%) and Florida (6%) (Table 2). 

Twenty-three states each reported between 1 and 9 domestically acquired typhoid cases 

during these 12 years. New Jersey and New York had relatively high crude rates of travel-

associated typhoid fever cases (2.05 per million and 1.99 per million, respectively) while 

Minnesota and California had relatively high crude rates of domestically acquired typhoid 

fever cases (0.43 per million and 0.42 per million, respectively).

Detection of domestically acquired typhoid clusters

In state-level analysis, 44 space–time clusters were detected in 24 states (Supplementary 

Table S1). Eighteen (41%) clusters had P values <0.05. The number of clusters per state 

ranged from 0 to 3. The median number of cases per cluster was 3 (IQR 2–6, range 2–16), 

the median duration for each cluster was 3 months (IQR 1–9.5, range 1–62), and the median 

number of counties per cluster was 3 (IQR 1–6.5, range 1–27). As an example, the locations 

and the number of cases per county in the three space–time clusters detected in California 

are shown in Figure 2a.

For region-level analysis, we identified three regions that consistently reported a large 

number of domestically acquired typhoid cases: a region in the western United States 

(Arizona, California, Idaho, Oregon, Nevada, Washington), a region in the eastern United 

States (Connecticut, Delaware, Kentucky, Massachusetts, Maryland, North Carolina, New 
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Jersey, New York, Pennsylvania, Rhode Island, Tennessee, Virginia, Vermont, West 

Virginia), and a region around Minnesota (Iowa, Minnesota, North Dakota, South Dakota, 

Wisconsin). Eleven space–time clusters were detected in region-level scans: five in the first 

region (Fig. 2b), five in the second, and one in the third region. Four (36%) clusters had P 
values <0.05. Three clusters crossed state lines. The median number of cases per cluster was 

5 (IQR 2–13, range 2–57), and the median duration was 2 months (IQR 1–7, range 1–62).

In the continental United States-level analysis, nine space–time clusters were detected (Fig. 

2c). Seven (78%) clusters had P values <0.05. The number of cases ranged from 2–85 

(median 6, IQR 4–15), and the duration ranged from 1–62 months (median 2, IQR 1–2). 

Seven clusters were in single states and had been detected by state-level analysis, one cluster 

that crossed a state line had been detected by a regional analysis. Multiple small clusters 

detected in state- and region-level scans appeared as one single cluster, in and around 

California, in the continental United States-level scan.

Considering all clusters detected by state, region, and the continental United State scans and 

eliminating smaller overlapping clusters detected in more than one scan, we identified 45 

distinct space–time clusters of ⩾2 domestically acquired typhoid cases. Eighteen (40%) 

clusters had P values <0.05 (Table 3).

Classification of domestically acquired typhoid clusters

Within the 45 identified space–time clusters, we identified a total of 28 outbreaks in 26 

clusters (two larger clusters each included two distinct outbreaks based on PFGE patterns 

and epidemiological information). The 19 remaining clusters consisted of 17 non-outbreaks 

and two possible outbreaks. Space–time clusters that were classified as outbreaks often 

included more cases (median 4 vs. 2), fewer counties (median 3 vs. 4), and were shorter 

(median 2 months vs. 5 months) than those classified as non-outbreaks. The positive 

predictive value of our space–time scan approach to outbreak detection was 58% [95% 

confidence interval (CI) 42–72] (26 space–time clusters including at least one outbreak in 45 

space–time clusters detected); when the two possible outbreaks were included, the positive 

predictive value was 62% (95% CI 47–76) (28/45). Sensitivity was 70% (95% CI 35–92) 

(7/10 reported or published outbreaks were detected) (Table 4). Specificity was 62% (95% 

CI 47–76) [Specificity is 1 minus probability of false positive, which was 38% (95% CI 24–

53)]. When analysis was limited to space–time clusters with P values <0.05, the positive 

predictive value and specificity increased to 78% (95% CI 59–97) and 89% (95% CI 74–

100), respectively, but the sensitivity decreased to 50% (95% CI 19–81) and 12 fewer 

outbreaks were detected.

Characteristics of domestically acquired typhoid outbreaks

Sixteen of the 28 outbreaks were linked to a confirmed or suspected carrier, two were linked 

to imported frozen mamey fruit pulp [21, 22], one was linked to Gulf Coast oysters [23], and 

five occurred in two household contacts with an unknown source. None were identified as 

waterborne. The number of epidemiologically linked cases in these outbreaks ranged from 2 

to 15 (median 2, IQR 2–4), and the duration ranged from 4 to 250 days (median 19.5, IQR 

10–45 days).
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Three outbreaks had ⩾2 different XbaI PFGE patterns in the epidemiologically linked cases. 

One outbreak that occurred in restaurant patrons was linked to a food handler who was a 

suspected carrier. Isolates from these patients had three different PFGE patterns, with the 

largest difference of two bands (Fig. 3a). The second outbreak occurred in two brothers 

diagnosed 1.5 months apart. The patterns from their isolates differed by two bands (Fig. 3b). 

Their grandmother was identified as a S. Typhi carrier, but her isolate was not available for 

subtyping. The patients involved in the third outbreak were a 74-year-old woman and a 17-

year-old boy living in the same household. They had illness onset within 2 days of each 

other, and their isolates differed by one band (Fig. 3c).

Three outbreaks published in the literature or reported to CDC outbreak surveillance 

systems were not detected (Table 4): one, because none of the outbreak-associated cases 

were reported to NTPFS; another, because only two cases were reported to NTPFS in an 

area with a high background rate of typhoid fever; and the third, because only one case was 

reported to NTPFS. The remaining 21 outbreaks detected by our approach had not been 

reported to CDC or published as outbreaks, but information from NTPFS forms or follow-up 

calls indicated that epidemiological links in cases were known to state health departments.

In three outbreaks that had previously been published or reported, the number of cases 

detected in the space–time cluster matched the number in the publication or report (Table 4). 

In three other outbreaks, the number of cases in the space–time cluster was smaller than the 

number of cases in outbreak reports, either because some of the outbreak-associated cases 

were not in the NTPFS database, or some of the outbreak-associated cases were spatially or 

temporally dispersed and not detected by the space–time scan statistic method. In one 

outbreak, the number of cases in the space–time cluster was larger than the number of cases 

in the outbreak report. This space–time cluster crossed a state line; while the outbreak report 

only discussed cases in one state, three additional cases occurred in an adjacent state during 

the same time period. Although PFGE data were not available for these additional cases, it is 

possible that these cases were linked to the outbreak and that the association was not 

recognized.

In addition, we identified two possible outbreaks in the detected space–time clusters. One 

was a cluster of two cases. These two cases had been part of a cluster of six cases recognized 

and investigated by the state health department (the other four cases were not reported to 

NTPFS); no epidemiological link was identified. The other cluster included five 

domestically acquired typhoid cases reported in one county during 1999–2001. No PFGE 

data or isolates were available. The state health department had no record of this cluster 

having been detected or investigated, and each case report was completed by different public 

health officials, suggesting this cluster had not been recognized as a possible outbreak.

DISCUSSION

Although typhoid fever is rare in the United States, domestically acquired typhoid fever 

cases continue to occur, causing occasional small outbreaks as well as substantial morbidity 

in affected patients. More than half of the detected outbreaks had been linked to a carrier. 

Due to potential contamination of food and water sources by an infected individual and the 
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resulting public health impact, every case of typhoid fever acquired in a country where the 

disease is not endemic warrants thorough investigation. Our study found that most possible 

outbreaks in the United States had been detected and investigated using traditional analysis 

of surveillance data. However, space–time scan statistics shows promise as a useful 

additional analytic tool for public health.

Domestically acquired typhoid cases differ from travel-associated cases in some 

characteristics. While most of travel-associated typhoid patients were young to middle-aged 

adults, domestically acquired typhoid patients included a higher proportion of infants and 

young children, and adults aged >60 years. This may be explained by the demographics of 

travellers to typhoid-endemic countries. Isolates from domestically acquired cases were 

significantly less likely to be multidrug resistant or nalidixic acid resistant. Resistance to 

nalidixic acid has been shown to correlate with decreased susceptibility to ciprofloxacin [24, 

25]. Antimicrobial resistance in S. Typhi strains has increased markedly during the past ~25 

years, especially in Asia [4, 26–28]. Lower rates of drug resistance in infections acquired in 

the United States may be due in part to the source of some domestically acquired typhoid 

infections being chronic carriers who acquired the infection before widespread 

establishment of resistant strains or who came from areas where drug resistance is less 

common. This difference also suggests that travel-associated cases are not the major source 

of infections for domestically acquired typhoid cases; this is also compatible with the 

modest differences in the observed geographical distribution and crude rates of domestically 

acquired and travel-associated cases by state.

We explored the use of a space–time scan statistic as a screening tool for detecting outbreaks 

in domestically acquired typhoid fever cases because typhoid fever outbreaks caused by 

asymptomatic carriers can be small, prolonged, and therefore difficult to detect by routine 

surveillance. We did not limit our analysis to the clusters with statistical significance, 

because domestically acquired typhoid fever cases are rare and finding previously 

undetected outbreaks is likely to require an approach with high sensitivity, even if the 

positive predictive value is compromised. The method detected seven of the ten outbreaks 

previously published in the literature or reported to CDC outbreak surveillance systems. Two 

outbreaks were not detected because none or only one case was reported to the typhoid fever 

case surveillance system. This highlights a major limitation of our approach, i.e. reliance on 

cases being reported to the surveillance system. The third outbreak was not detected because 

it was masked by the presence of a concurrent large space–time cluster in neighbouring 

counties.

We also explored whether a space–time scan statistic could identify previously unrecognized 

outbreaks. We detected one possible outbreak that may not have been recognized previously; 

however, in all the other outbreaks detected by our approach, epidemiological links in cases 

were already known to state health departments. These outbreaks were not reported, perhaps 

because until 2009 only foodborne and waterborne disease outbreaks were reported through 

CDC outbreak surveillance systems. Before 2009, if the mode of transmission in a typhoid 

fever outbreak was unclear or determined to be not foodborne or waterborne, the outbreak 

might not have been reported. This limitation was eliminated with the advent of NORS in 

2009, a national surveillance system to which outbreaks with various modes of transmission 
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or an indeterminate mode of transmission can be reported. Several clusters that met the 

outbreak definition involved household contacts. Because CDC outbreak surveillance 

systems are passive surveillance systems, there is variability in reporting practices in states; 

while some local and state health departments report household clusters to the outbreak 

surveillance system, others do not. We relied on available data and state health departments 

for outbreak classification: misclassification of outbreaks (e.g. true outbreaks misclassified 

as non-outbreaks when multiple PFGE patterns were present and epidemiological data were 

missing) may have affected our ability to accurately evaluate the space–time scan approach.

This study also highlighted possible limitations of current surveillance for typhoid fever 

outbreaks, which consists of local epidemiological investigation and a search for S. Typhi 

isolates with matching PFGE patterns in PulseNet from cases that occurred within a 60-day 

period. Since typhoid fever is uncommon, most confirmed cases are followed-up by local 

health departments and reported to state health departments, and eventually to NTPFS. 

While some space–time clusters of domestically acquired typhoid cases detected in our 

study crossed state lines, state health departments may not be aware of other typhoid fever 

cases in neighbouring states. As the purpose of NTPFS is to monitor trends and risk factors, 

case report forms are currently not collected in a manner that allows real-time outbreak 

detection. Not all S. Typhi isolates are submitted to PulseNet and possible associations 

between uploaded isolates may be missed if they occurred >60 days apart. Timely collection 

of case report forms and routine linking of NTPFS and PulseNet may improve outbreak 

surveillance by allowing PulseNet to focus on domestically acquired cases and expand the 

surveillance period from the current 60 days. We also detected three outbreaks involving 

multiple PFGE patterns in isolates from epidemiologically linked cases. A single chronic 

carrier can simultaneously shed S. Typhi variants with considerable genetic differences [29]. 

Microbiologically, it is plausible that genetic mutations occur within a S. Typhi strain 

harboured by a chronic carrier over years. Further, since chronic carriers can shed the 

bacterium for many years, laboratory-based surveillance at local, state, and national levels 

should include review of subtyping data on isolates submitted over several years.

The study has some limitations beyond those discussed above. This was a retrospective 

analysis of passive surveillance data collected over 12 years; some cases and outbreaks were 

not reported to the surveillance system and some outbreaks were difficult to confirm because 

epidemiological or isolate data were missing. Many of the cases occurred >5 years earlier; 

additional epidemiological data could not be obtained, and isolates often had not been 

stored. Moreover, we may have misclassified travel-associated cases as domestic cases if the 

incubation period was over 30 days. Because no common identification system existed in the 

databases, we often had to rely on demographic data to merge databases, which limited our 

ability to accurately link isolate data to surveillance data in some cases. We used county of 

residence as a proxy for the location of exposure; some cases may have acquired infection in 

another county or even in another state. We also faced limitations inherent to the space–time 

scan statistic. Outbreaks widely dispersed in space or time, small outbreaks in areas with 

high background rates of typhoid or large populations, and separate outbreaks with 

overlapping areas may have escaped detection by our approach. Clusters with overlapping 

areas may be detected as one large cluster if they occurred during the same time period. 

Separate clusters that overlapped in space, but not in time would not be detected based on 
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the ‘no spatial overlap’ setting we used for our space–time scans. In addition, purely 

temporal scans might also have been effective for detecting outbreaks that were spatially 

diffuse.

In conclusion, although they may be small, outbreaks of typhoid fever continue to occur in 

the United States. Our approach using a space–time scan statistic detected most reported or 

published outbreaks. Although it did not definitively identify any previously unrecognized 

outbreaks, it showed the potential to detect outbreaks that may escape detection by routine 

analysis of surveillance data, including a potential outbreak that extended across 

jurisdictional lines and a potential outbreak involving multiple PFGE patterns. To improve 

detection of domestically acquired typhoid fever outbreaks, we recommend that state and 

local health departments investigate and report all domestically acquired typhoid fever cases 

and identified outbreaks. Although the United States does not have national guidelines, 

detailed guidelines for management and investigation of typhoid and paratyphoid cases are 

outlined in a document published in England [30, 31]. We recommend CDC continue to 

explore the use of space–time scan statistics using different parameters and settings or use of 

the retrospective space–time permutation scan statistic [8] for identification of domestically 

acquired typhoid fever clusters that may represent undetected outbreaks retrospectively and 

for prospective real-time or periodic disease surveillance. Moreover, CDC should explore 

ways to improve timeliness of the typhoid fever surveillance system and to enable linking of 

the databases more easily. Space–time scan statistics may be a promising tool for outbreak 

detection, when used together with molecular subtyping and shoe-leather epidemiology.
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Fig. 1. 
Reported typhoid fever cases by travel status, National Typhoid and Paratyphoid Fever 

Surveillance, United States, 1999–2010.
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Fig. 2. 
Space–time clusters of domestically acquired typhoid-typhoid fever* by number of cases per 

cluster and time between first and last case detected in: (a) California, 1999–2010 (number 

of cases per county also shown); (b) a region in western United States, 1999–2010; and (c) 

continental United States, 1999–2010. (* Space–time clusters were identified in cases 

reported to the National Typhoid and Paratyphoid Fever Surveillance.)
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Fig. 3. 
Dendrogram of pulsed-field gel electrophoresis (PFGE)–XbaI patterns of the Salmonella 
enteria serotype Typhi strains from three outbreaks (a–c) involving more than one pattern, 

United States.
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Table 3

Proportion of outbreaks in statistically significant and non-significant space–time clusters of domestically 

acquired typhoid fever, United States, 1999–2010*

Space–time clusters

P < 0.05 P > 0.05 Total

No. of detected clusters 18 27 45

No. (%) outbreaks in clusters 14 (78%) 12 (44%) 26 (58%)

No. (%) outbreaks and possible outbreaks in clusters 16 (89%) 12 (44%) 28 (62%)

*
Space–time clusters were identified in cases reported to the National Typhoid and Paratyphoid Fever Surveillance.
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Table 4

Outbreaks of domestically acquired typhoid fever published in the literature or reported to CDC outbreak 

surveillance systems and cases in space–time clusters, United States, 1999–2010*

Year Vehicle or common exposure

Number of cases 
in outbreak 
report

Number of cases in 
space–time cluster Reference for outbreak

1999–2000 Imported frozen mamey 15 15 [21]; CDC†

2000 Sexual transmission between men; linked 
to carrier

  7   4 [32]

2000 Restaurant; linked to suspected carrier   9 13 [33]; additional unpublished data 
from NYC DHMH

2000 Temple 16   6 CDC†

2001 Carrier   3 Not detected‡ CDC†

2002 Restaurant; linked to carrier   4 Not detected§ CDC†

2003 Gulf coast oyster   6   6 [23]; CDC†

2005 Congregation meeting; linked to returned 
traveller

  2 Not detected¶ [34]

2009 Unknown (occurred in children)   3   3 CDC†

2010 Imported frozen mamey 12   5 [22], CDC†

NTPFS, National Typhoid and Paratyphoid Fever Surveillance; NYC DHMH, New York City Department of Health and Mental Hygiene.

*
Space–time clusters were identified in cases reported to the NTPFS.

†
Reported to CDC outbreak surveillance systems comprised of the Foodborne Disease Outbreak Surveillance System, Waterborne Disease and 

Outbreak Surveillance System, and the National Outbreak Reporting System.

‡
None of the cases were in NTPFS.

§
Two of the cases were in NTPFS, but the cluster occurred in an area with high background rate of typhoid fever.

¶
Only one of the cases was in NTPFS.
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